Researchers worldwide are working to develop so called 'spintronics' to begin a new information processing era.

"Diamond has a lot going for it when it comes to spintronics," said lead investigator Chris Hammel, Ohio Eminent Scholar in experimental physics at Ohio State University.

It is hard, transparent, electrically insulating, impervious to environmental contamination, resistant to acids and does not hold heat as semiconductors do.

In the experiment, electrons did not flow through diamond as they do in traditional electronics. Rather, they stayed in place and passed along a magnetic effect called 'spin' to each other down the wire like a row of sports spectators doing 'the wave'.

"Basically, it is inert. You cannot do anything to it. To a scientist, diamonds are kind of boring, unless you are getting engaged. But it is interesting to think about how diamond would work in a computer," Hammel added.

This discovery could change the way researchers study spin.

“The fact that spins can move like this means that the conventional way that the world measures spin dynamics on the macroscopic level has to be reconsidered it is actually not valid," he mentioned.

Nobody could see the spins in diamond before but this experiment proved that diamond can transport spin in an organized way, preserving spin state thus preserving information.

The finding appeared in  journal Nature Nanotechnology.


Latest News from Lifestyle News Desk