The biggest challenge is conflicting design requirements: aerial vehicles require large airfoils like wings or sails to generate lift while underwater vehicles need to minimise surface area to reduce drag.
To solve this engineers at the Harvard University's John A Paulson School of Engineering and Applied Science (SEAS) took a clue from puffins.
The birds with flamboyant beaks are one of nature's most adept hybrid vehicles, employing similar flapping motions to propel themselves through air as through water.

The RoboBee is so small and lightweight that it cannot break the surface tension of the water.
To overcome this hurdle, the RoboBee hovers over the water at an angle, momentarily switches off its wings, and crashes unceremoniously into the water in order to sink.
A swimming RoboBee changes its direction by adjusting the stroke angle of the wings, the same way it does in air. Like a flying version, it is still tethered to a power source.
The team prevented the RoboBee from shorting by using deionised water and coating the electrical connections with glue.
While this RoboBee can move seamlessly from air to water, it cannot yet transition from water to air because it can't generate enough lift without snapping one of its wings.


Latest News from Lifestyle News Desk