The team led by Richard Harrison captured information stored inside tiny magnetic regions in meteorite samples using the dedicated photo-electron emission microscope (PEEM)-Beamline at BESSY II, a research establishment in the Adlershof district of Berlin, Germany.

This information provides a sneak preview of the fate of the Earth's own magnetic field as its core continues to freeze. Harrison identified specific regions filled with nanoparticles that were magnetically extremely stable.

These 'tiny space magnets' retain a faithful record of the magnetic fields generated by the meteorite's parent body. Harrison and PhD student James Bryson found dramatic variation in magnetic properties as they went through the meteorite.

"These tiny particles, just 50 to 100 nanometres in diameter, hold on to their magnetic signal and do not change. So it is only these very small regions of chaotic looking magnetisation that contain the information we want," Bryson added.

The observations demonstrate that the magnetic field was created by compositional, rather than thermal convection."This changes our perspective on the way magnetic fields were generated during the early solar system," Harrison concluded. Their results were published in the journal Nature.

Latest News from Lifestyle News Desk